Progressive restriction in fate potential by neural progenitors during cerebral cortical development.
نویسندگان
چکیده
During early stages of cerebral cortical development, progenitor cells in the ventricular zone are multipotent, producing neurons of many layers over successive cell divisions. The laminar fate of their progeny depends on environmental cues to which the cells respond prior to mitosis. By the end of neurogenesis, however, progenitors are lineally committed to producing upper-layer neurons. Here we assess the laminar fate potential of progenitors at a middle stage of cortical development. The progenitors of layer 4 neurons were first transplanted into older brains in which layer 2/3 was being generated. The transplanted neurons adopted a laminar fate appropriate for the new environment (layer 2/3), revealing that layer 4 progenitors are multipotent. Mid-stage progenitors were then transplanted into a younger environment, in which layer 6 neurons were being generated. The transplanted neurons bypassed layer 6, revealing that layer 4 progenitors have a restricted fate potential and are incompetent to respond to environmental cues that trigger layer 6 production. Instead, the transplanted cells migrated to layer 4, the position typical of their origin, and also to layer 5, a position appropriate for neither the host nor the donor environment. Because layer 5 neurogenesis is complete by the stage that progenitors were removed for transplantation, restrictions in laminar fate potential must lag behind the final production of a cortical layer. These results suggest that a combination of intrinsic and environmental cues controls the competence of cortical progenitor cells to produce neurons of different layers.
منابع مشابه
Restriction of Late Cerebral Cortical Progenitors to an Upper-Layer Fate
Early in development, neural progenitors in cerebral cortex normally produce neurons of several layers during successive cell divisions. The laminar fate of their daughters depends on environmental cues encountered just before mitosis. At the close of neurogenesis, however, cortical progenitors normally produce neurons destined only for the upper layers. To assess the developmental potential of...
متن کاملNeural bHLH Genes Control the Neuronal versus Glial Fate Decision in Cortical Progenitors
We have addressed the role of the proneural bHLH genes Neurogenin2 (Ngn2) and Mash1 in the selection of neuronal and glial fates by neural stem cells. We show that mice mutant for both genes present severe defects in development of the cerebral cortex, including a reduction of neurogenesis and a premature and excessive generation of astrocytic precursors. An analysis of wild-type and mutant cor...
متن کاملLate origin of glia-restricted progenitors in the developing mouse cerebral cortex.
In order to unravel the molecular determinants of cell fate, it is important to understand when fate restriction occurs during brain development. Lineage analysis suggested that bi- or multipotent progenitors persist into late developmental stages in some central nervous system regions, whereas most progenitor cells in the cerebral cortex appeared to be restrained to generate only a single cell...
متن کاملEditorial: In vivo Cell Biology of Cerebral Cortical Development and Its Related Neurological Disorders
The brain consists of complex but precisely organized neural networks, which determine the structural basis of higher order functions. Remarkably, this complex structure originates from a simple pseudostratified neuroepithelium. How it is formed is best seen in the elegant example of the cerebral cortex. In the developing mammalian cerebral cortex, polarized neural progenitors are arranged in a...
متن کاملRP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.
Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negativel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 13 شماره
صفحات -
تاریخ انتشار 2000